Reference corso di Access

tutti i diritti riservati. Questa copia è utilizzabile dallo studente soltanto per uso personale e non può essere impiegata come guida in corsi o consulenze. Nessuna parte di questo documento può essere riprodotta, immagazzinata in sistemi magnetici o trascritta, in qualsiasi forma e con qualsiasi mezzo, senza l'autorizzazione scritta

I Database

Possiamo descrivere qualcosa, ad esempio un fiore così:

Questo fiore è una MARGHERITA, è di colore GIALLO ed è alta 15 cm.
Questo fiore è una VIOLA, è di colore VIOLA ed è alta 10 cm.
Questo fiore è un LILIUM, è di colore ROSSO ed è alta 110 cm.
Questo fiore è una ROSA, è di colore ROSSO ed è alta 90 cm.

Quindi ogni fiore ha delle qualità, che chiameremo attributi come :

- NOME
- COLORE
- DIMENSIONE

Se creiamo una tabella usando questi attributi otterremo:

Rosa

90

Righe=RECORDNomeColoreDimensioneMargheritaGiallo15ViolaViola10LiliumRosso110

Tabella=DATABASE

E' possibile Inserire nuovi RECORD, modificarli, eliminarli, ordinarli, cercarli.

Rosso

Come in un libro è possibile cercare le pagine dei fiori usando un **INDICE.**

In un database l'indice è un file separato che contiene il numero di record, che è come un numero di pagina ed il campo indicizzato, ad esempio il nome:

Record	Nome		
3	Lilium		
1	Margherita		
4	Rosa		
2	Viola		

Però a differenza di un libro è possibile creare indici per ogni colonna, e molto rapidamente.

Creiamo la tabella AZIENDE a seguito:

Columns

Name	Type		Size
ID_azienda	Number (Long)	contatore	4
Ragione sociale	Text		50
Indirizzo	Text		50
CAP	Text		5
Citta	Text		35
Telefono	Text		15
Pr	Text		2
Crediti	Number (Double)		8
Data	date/Time		
Attivo	yes/No		

Table Indexes

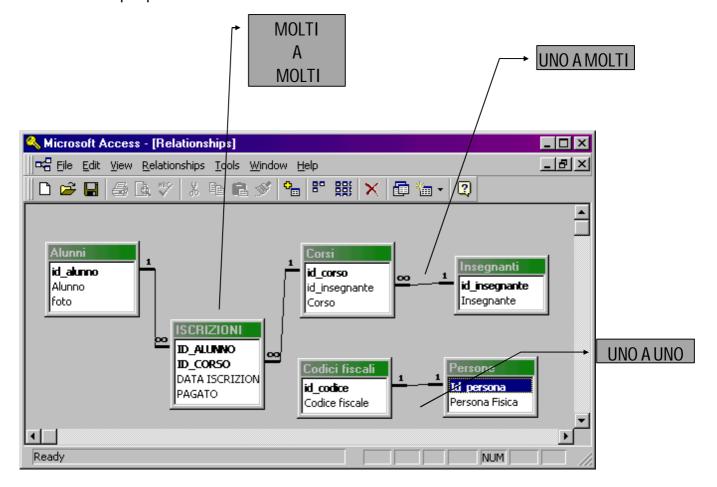
Name Number of Fields Citta Citta, Ascending Fields: Crediti Fields: Crediti, Ascending Fields: Pr, Ascending PrimaryKey Fields: ID, Ascending Ragione sociale Fields: Ragione sociale, Ascending

Inseriamo i seguenti dati :

Ragione sociale	Indirizzo		Citta	Pr		Crediti
_		CAP			Telefono	
ALFA	Corso	22053	Lecco	LC	0341/123456	200000
BETA	Corso	20100	Milano	MI	0341/123877	100000
GAMMA	Corso	22049	Valmadrera	LC	0341/858565	300000
DELTA	Corso	22100	Como	CO	0341/789789	200000
OMEGA	Corso	22040	Garlate	LC	0341/123890	100000
EPSILON	Corso	23100	Bergamo	BG	0341/124546	400000
EMME	Corso	24100	Como	LC	0341/134534	500000
ZETA	Corso	00100	Valmadrera	R	0341/575656	300000

Procediamo poi a:

- Editing
- Ordinamento
- Ricerca
- Selezione e filtri


Diagramma Entità-Relazione

Il metodo più utilizzato per formalizzare sotto forma di Database un problema della realtà fisica è una metodologia così detta E-R.

Cioè dobbiamo stabilire quali sono le Entità coinvolte in un problema e le relazioni fra le stesse:

A Seguito abbiamo il tracciato che Access ci permette di definire in modo molto efficace, con degli esempi di entità ed i tipi di relazioni che essi hanno fra loro. Un tipo di relazione molto raro in natura è la relazione **UNO A UNO.**

Un esempio potrebbe essere la relazione fra Voi e il vostro codice fiscale.

Il secondo tipo di relazione, molto diffuso in natura si chiama **UNO A MOLTI**, ed è il caso di **un** insegnante che può tenere **molti** corsi o di **una** madre che può avere **molti** figli .

Il terzo tipo di relazione, altrettanto diffuso, si chiama MOLTI A MOLTI, ed è il caso del rapporto che c'è fra molti alunni che si iscrivono a molti corsi. Access non può gestire direttamente una relazione molti a molti, ma necessita della creazione di una tabella intermedia che contenga le chiavi primarie delle due tabelle da cui proviene questo rapporto. Ad esempio sopra il problema del legame tra alunni e corsi viene risolto con la creazione della tabella ISCRIZIONI, ovvero la relazione indiretta fra alunni e corsi.

Voglio un programma che possa contenere le <u>Telefonate</u> in entrata ed in uscita di <u>clienti e fornitori.</u>

clienti e fornitori = aziende

Domande	SI	NO
Può una telefonata appartenere a più aziende ?		Х
Può un'azienda fare più telefonate?	Х	

Risultato UNO a MOLTI

Creerò due tabelle

Domande	SI	NO
può un codice FISCALE appartenere a più persone ?		Х
Può una persona avere più di un codice fiscale		Х

Risultato UNO a UNO Creerò una tabella

Domande	SI	NO
Può un allievo avere molti insegnanti?	Х	
Può un insegnante avere molti allievi?	Χ	

Risultato MOLTI a MOLTI

Creerò tre tabelle

Creiamo la tabella <u>TELEFONATE</u> a seguito:

Columns

Name	Туре	Size
ID_Telefonata	Number (Long) Contatore	4
ID_Azienda	Number (Long)	4
In/Out	Text	3
Data	Date/Time	8
Persona	Text	30
Messaggio	Memo	_

Table Indexes

Name Number of Fields

Data1Fields:Data, AscendingID_Azienda1Fields:IDCliente, AscendingPrimaryKey1Fields:IDTelefonate, Ascending

Normalizzazione delle tabelle

Una volta definite le Entità, e trasformate queste in tabelle, si applicano le regole di NORMALIZZAZIONE, cioè si procede alla verifica della struttura delle tabelle secondo precise regole logiche portate alla popolarità dal dottor CODD dalla fine degli anni '60.

PRIMA FORMA NORMALE

"Una relazione è in 1NF se tutti i suoi campi contengono valori atomici"

Tabella Fornitori

ID_Società	NomeSocietà	Indirizzo	Telefono	Fax
	1 Ronco & Nu	Piazza Diaz	0473/78945	543343
			0434/75950	
	2 Gioie & Dolori	Via Mantù	02/893445	355435
	3 Moda &c.	Via Roma	0187/98786 7 0321873524	3456546

PROBLEMI

Dimensione campo Telefono Ricerca all'interno di stringa Tipo di dato per forza stringa

PK

Tabella Fornitori

ID_Società	NomeSocietà	Indirizzo	Telefono1	Telefono2	Fax
	Ronco & Nu	Piazza Diaz	0473/78945	0434/75950	543343
,	2 Gioie &	Via Mantù	02/893445	355435	355435
	Dolori				
	Moda &c.	Via Roma	0187/98786	0321/873524	3456546
			7		

POSSIBILE SOLUZIONE Insoddisfacente perchè non conosciamo quanti telefoni potremmo avere

PK

Tabella Fornitori

ID_Società		NomeSocietà	Indirizzo	Fax
	1	Ronco & Nu	Piazza Diaz	543343
	2	Gioie &	Via Mantù	355435
		Dolori		
	3	Moda &c.	Via Roma	3456546
DI				-

PK

Tabella Numeri di telefono

IDTelefono	Telefono1	ID_Società
1	0473/78945	1
2	02/893445	2
3	0187/987867	3
4	0434/75950	1
5	355435	2
6	0321/873524	3
PK		FK

SOLUZIONE 2 tabelle Quanti telefoni vogliamo per fornitore ricerca semplice tipo di dato numerico

COME SI FA

Si crea una nuova tabella che contenga il campo da normalizzare(Telefono), un campo chiave(IDTelefono), ed il campo chiave della tabella Fornitori come campo di chiave esterna(NomeSocietà) "una relazione è in 2NF se ogni attributo (campo) non facente parte della chiave primaria dipende funzionalmente in maniera irriducibile dall'intera chiave primaria"

Tabella dipendenti

Nome	Cognome	Via	Città	Provincia
Carlo	Turri	Roma	Monza	MI
Giulia	Rovi	Sevi	Merano	BZ
Siria	Giusti	Golia	Monza	MI
Laura	Galli	Giuri	Monza	MI

PK=Nome+Cognome+Città

DIPENDENZA FUNZIONALE

Ogni volta che si ripete il nome della città si ripete anche la provincia.

Città= X - Provincia = Y

Y dipende da X se ogni volta che si ripetono valori in X si hanno valori ripetuti in Y

ANOMALIE:

di aggiornamento : inconsistenza dei dati - se Turri trasloca a Merano devo ricordare di cambiare PR altrimenti risulta che Merano è in provincia di Milano sul record 1 e che Merano è in provincia di Bolzano sul record 2.

di cancellazione : se cancelliamo il record 2 perdiamo l'informazione che Merano è in provincia di BZ oltre che le informazioni di Giulia Rovi.

Tabella Dipendenti

Nome	Cognome	Via	Città
Carlo	Turri	Roma	Monza
Giulia	Rovi	Sevi	Merano
Siria	Giusti	Golia	Monza
Laura	Galli	Giuri	Monza

PK=Nome+Cognome+Città

Tabella Provincie

Città	Provincia
Monza	MI
Merano	BZ
PK	

FK

SOLUZIONE

2 tabelle Si elimina dalla tabella Fornitori il campo da normalizzare(PR) e si fa una seconda tabella che contiene tutti i campi che nella tabella originale (Città e PR) davano origine ad una dipendenza funzionale.

TERZA FORMA NORMALE

"Una tabella è in 3NF se tutti gli attributi non chiave sono mutuamente indipendenti"

Tabella telefono

Telefono	Tipo	IdUfficio	AreaMq
34	Fax	2	200
43	Fax	5	55
42	Telefono	2	200
75	Telefono	3	60
55	Telefono	4	100
77	Fax	2	200
57	Telefono	3	60
56	Fax	1	200
PK	†	<u> </u>	<u> </u>

Si ripetono 3 campi, ma solo fra IDUfficio ed AreaMq esiste una dipendenza funzionale

Tabella telefono

Telefono	Tipo	IdUfficio
34	Fax	2
43	Fax	5
42	Telefono	1
PK		FK

Tabella ufficio

IdUfficio	AreaMq
2	200
5	55
1	200

PΚ

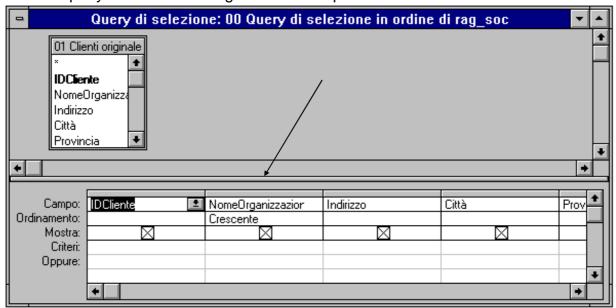
SOLUZIONE

2 tabelle

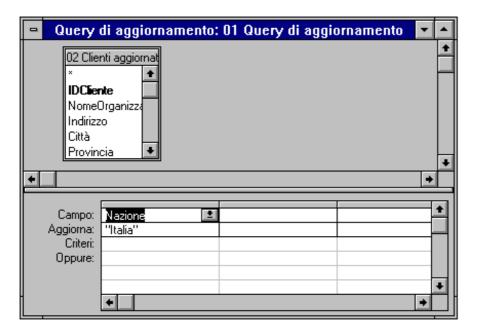
Si elimina dalla tabella Telefono il campo da normalizzare(AreaMq) e si fa una seconda tabella che contiene tutti i campi che nella tabella originale (IdUfficio ed AreaMq) davano origine ad una dipendenza funzionale.

Glossario:

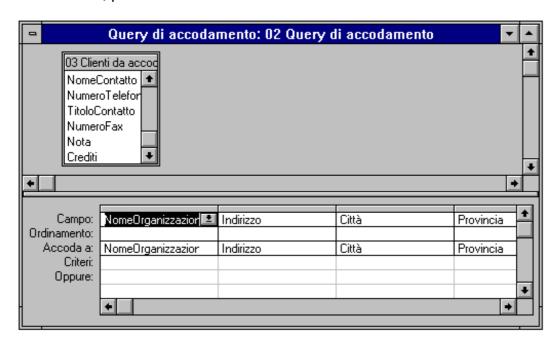
PK = Primary Key cioè Chiave primaria

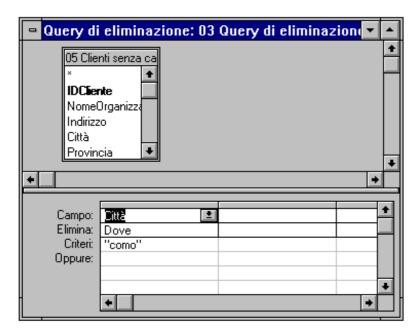

FK = Foreign Key cioè Chiave Esterna

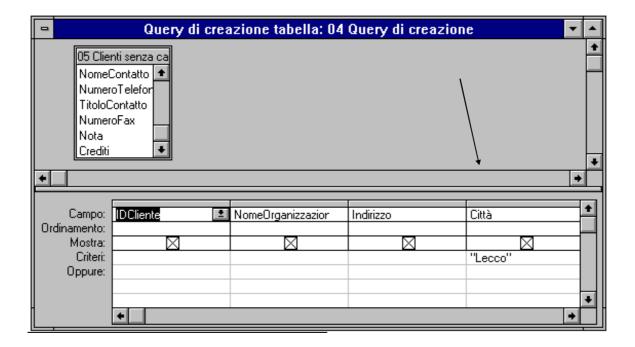
Relazione = tabella (relazione fra campi)


Query di comando

In Access si rende indispensabile eseguire comandi che manipolino i dati eseguendo delle query come quelle a seguito :


Le query di selezione vengono utilizzate per selezionare dei dati dalle tabelle


Le query di aggiornamento vengono utilizzate per Modificare il contenuto dei dei campi dalle tabelle, ad esempio la query qui sotto scrive Italia nel campo Nazione della tebella Clienti aggiornati .


Le query di accodamento vengono utilizzate per aggiungere record su una tabella, partendo da un'altra tabella.

Le query di eliminazione vengono utilizzate per eliminare record su una tabella.

Le query di creazione tabella vengono utilizzate per creare nuove tabelle, partendo da altre tabelle esistenti.

Esempio di creazione di un'applicazione:

- 1) Analisi del problema
- 2) Diagramma Entità-Relazione
- 3) Creazione tabelle disegno diagramma integrità
- 4) Creazione Maschere (Input)
- 5) Creazione Report (Output)
- 6) Creazione pannello comandi
- 7) Creazione macro Autoexec
- 1) Analisi

Questo è i problema spiegato da chi chiede l'applicazione :

Vorrei un programma per gestire le telefonate ricevute e fatte a clienti e fornitori. Analizzando la frase troviamo i sequenti sinonimi:

Telefonate

Clienti

Fornitori

Da una breve analisi possiamo sintetizzare il problema come segue:

Nominativi fanno Telefonate, i Nominativi sono divisi in Categorie.

Quindi abbiamo identificato le Entità del problema in:

Nominativi

Telefonate

Categorie

2) Diagramma Entità-Relazione.

Dobbiamo ora chiarire le <u>relazioni</u> fra le entità:

Le relazioni sono fra Nominativi e Telefonate e Nominativi e Categorie, cioè non ci sono relazioni dirette fra Telefonate e categorie.

Consideriamo inesistenti le relazioni UNO A UNO, e sappiamo che le relazioni MOLTI A MOLTI devono essere spezzate in più relazioni UNO A MOLTI.

Questo significa che dobbiamo verificare per ogni entità qual è il lato UNO e quale il lato MOLTI rispetto ad ogni altra Entità, in quanto è l'unico tipo di relazione di cui abbiamo bisogno per progettare l'applicazione.

In pratica ci dobbiamo chiedere:

UN NOMINATIVO può contenere MOLTE TELEFONATE? SI'

UNA TELEFONATA può contenere MOLTI NOMINATIVI? NO

UN NOMINATIVO può contenere MOLTE CATEGORIE? NO

UNA CATEGORIA può contenere MOLTI NOMINATIVI? SI'

Abbiamo quindi scoperto le seguenti relazioni:

UN NOMINATIVO - MOLTE TELEFONATE

UNA CATEGORIA - MOLTI NOMINATIVI.

3) Creazione tabelle - disegno diagramma - integrità

A questo punto possiamo creare le tabelle, sapendo esattamente dove mettere i campi con le chiavi esterne per creare le relazioni, ovvero sulla tabella che sta nel lato MOLTI di ogni relazione .

Cioè sappiamo che se NOMINATIVO è in relazione UNO A MOLTI con TELEFONATE, la tabella NOMINATIVI avrà come chiave primaria ID Nominativo che aggiungeremo alla

tabella TELEFONATE come Chiave esterna, ovvero come campo di collegamento fra le due tabelle.

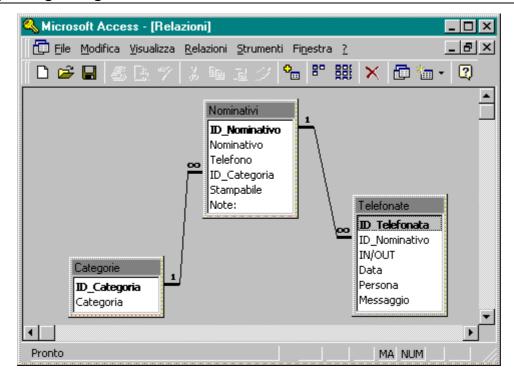
Possiamo quindi tracciare il diagramma Entità-Relazione e stabilire le regole di Integrità che ci servono.

TABELLA CATEGORIE

Nome campo	Tipo dati	Descrizione
ID_Categoria	Contatore	Campo chiave
Categoria	Testo	Dimensione 15 - Indicizzato (duplicati non ammessi)

TABELLA NOMINATIVI

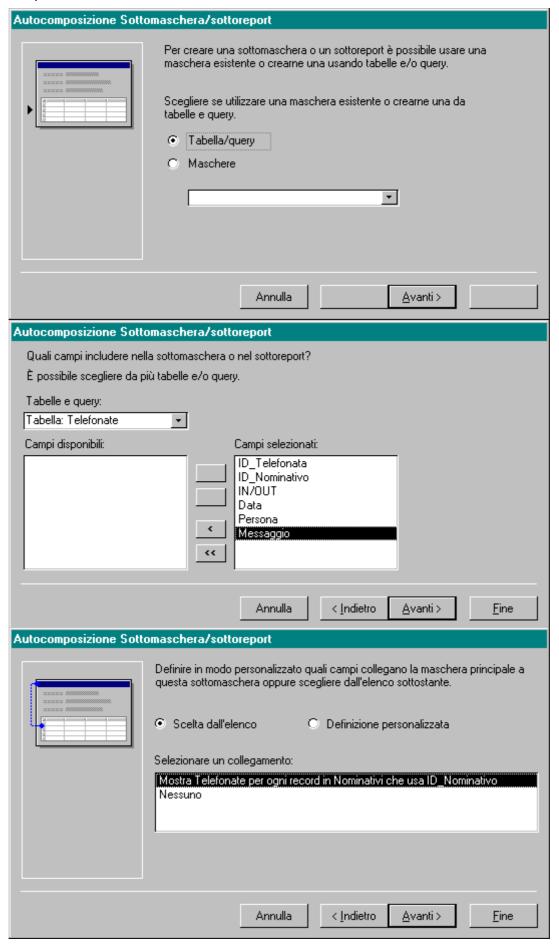
Nome campo	Tipo dati	Descrizione
ID_Nominativo	Contatore	Campo chiave
Nominativo	Testo	Dimensione 50 - Indicizzato (duplicati ammessi)
Telefono	Testo	Dimensione 15
ID_Categoria	Numerico	Chiave esterna - Indicizzato (duplicati ammessi)
Stampabile		
Note:		


TABELLA TELEFONATE

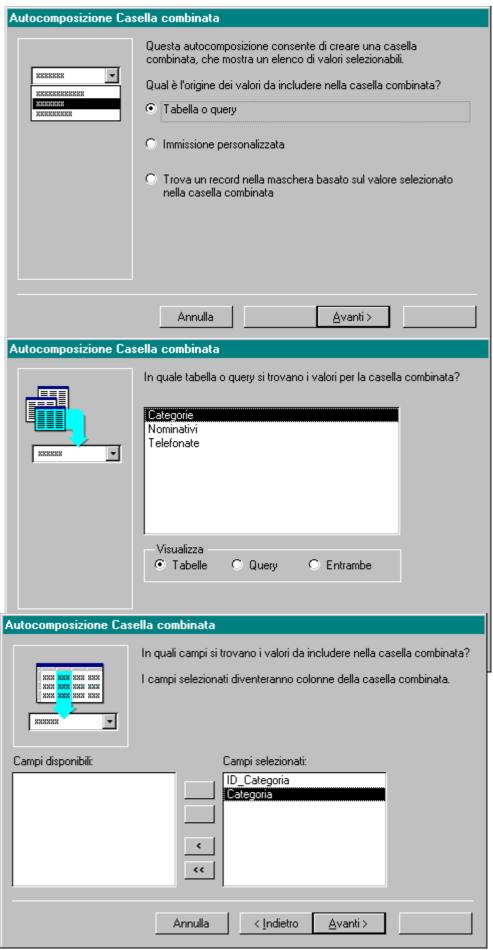
Nome campo	Tipo dati	Descrizione
ID_Telefonata	Conta	atore Campo chiave
ID_Nominativo	Numerico	Chiave esterna - Indicizzato (duplicati ammessi)
IN/OUT	Testo	Dimensione 1 - Indicizzato (duplicati ammessi)
Data	Data/ora	Indicizzato (duplicati ammessi)
Persona	Testo	Dimensione 15
Messaggio	Memo	

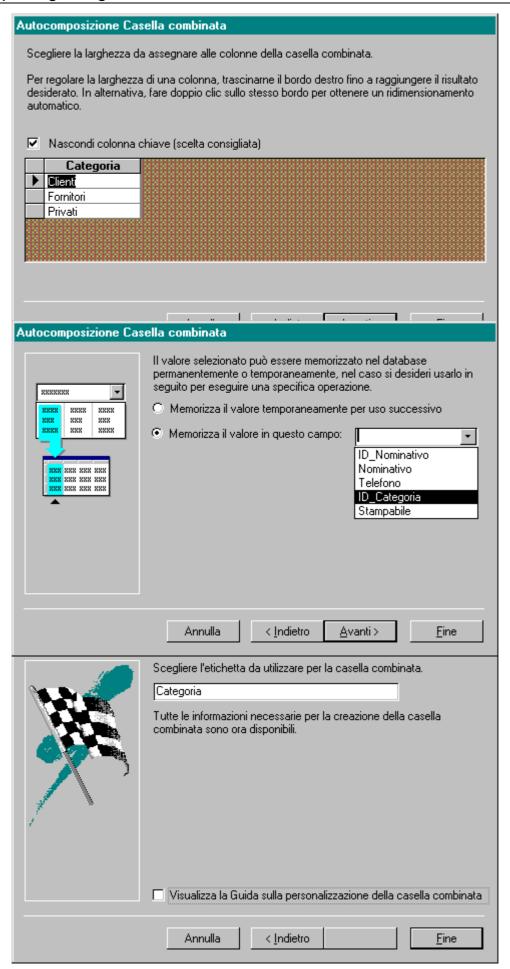
Per stabilire le regole di Integrità dobbiamo scegliere se impedire ad un utente di cancellare un nominativo se ha fatto delle telefonate (cioè ha inserito record nella tabella telefonate con riferimento alla chiave primaria di un nominativo), oppure se quando cancelliamo un nominativo vengono cancellate anche tutte le telefonate che ha fatto. Scegliamo la seconda ipotesi.

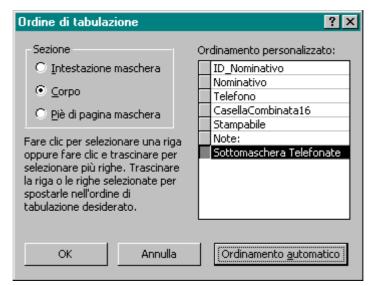
Dobbiamo fare lo stesso ragionamento fra Categorie e Nominativi. Scegliamo di impedire che si possa cancellare una categoria se è stata utilizzata in un nominativo.



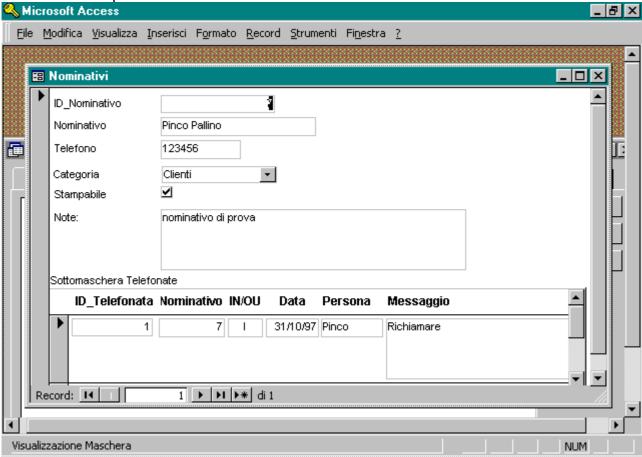
4) Creazione Maschere (Input)



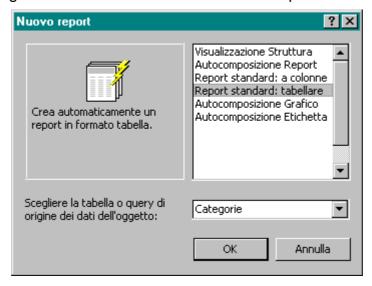

Per la tabella Categorie utilizziamo l'autocomposizione tabellare ed a colonne per Nominativi Inseriamo poi nella maschera Nominativi la tabella Telefonate:


Eliminiamo il campo Categoria ed inseriamo una casella combinata legata alla Tabella

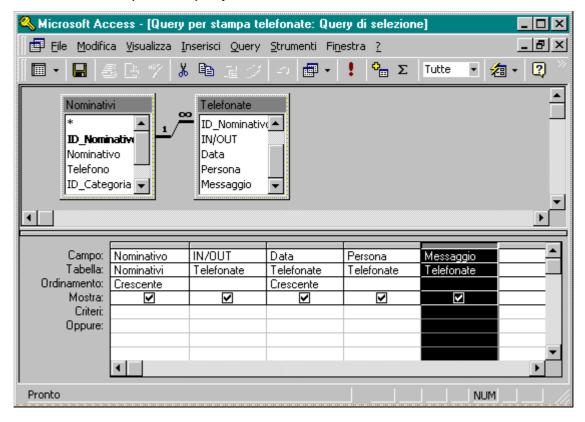
Categorie:



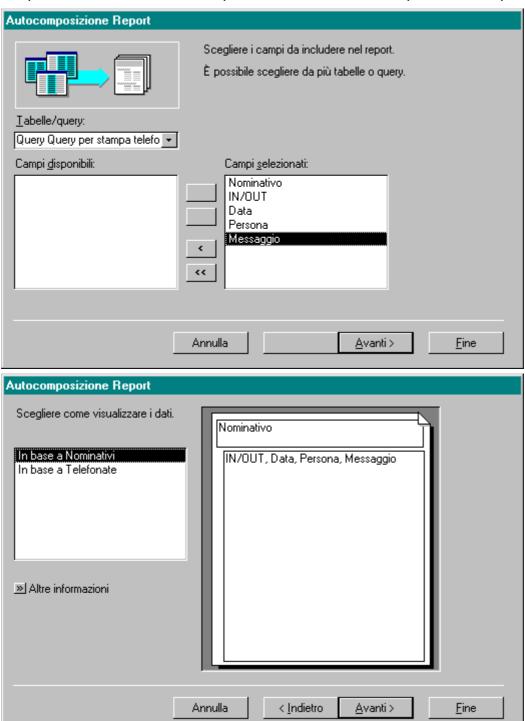
Infine dal menù Visualizza/Ordine di tabulazione diamo l'ordinamento automatico:

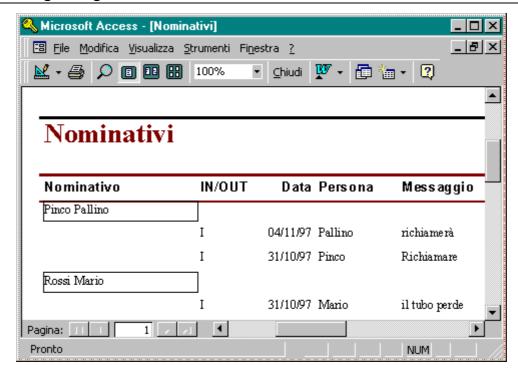


Otteniamo dunque:

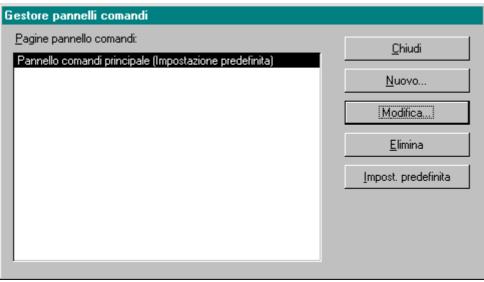

5) Creazione Report (Output)

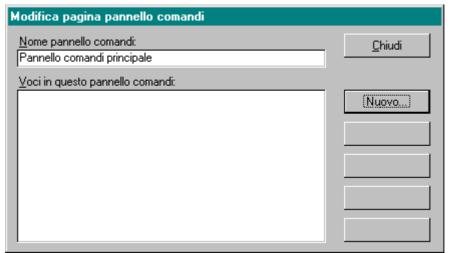
Per la tabella Categorie e nominativi utilizziamo l'autocomposizione record standard

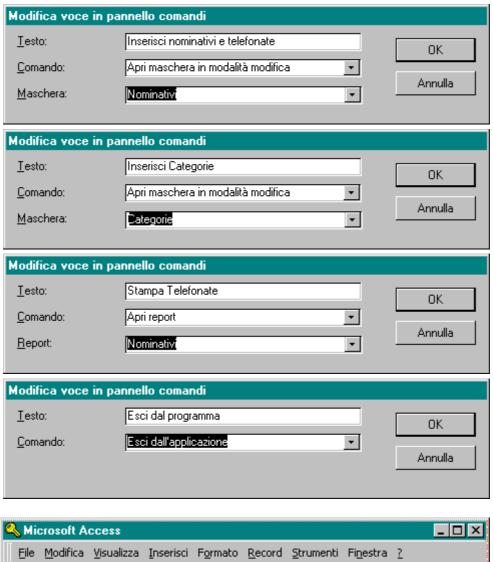



tabellare:

Per stampare le telefonate vogliamo creare un report che contenga le telefonate in ordine di cliente, creiamo dunque una query :

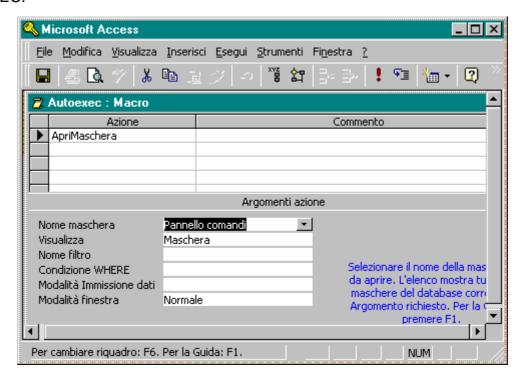

a questo punto Creiamo un nuovo report utilizzando l'Autocomposizione Report:





6) Creazione pannello comandi

Per rendere più semplice l'uso del programma creiamo un pannello dei comandi, ovvero una maschera che faccia da menù principale, passando da Strumenti/Aggiunte/Gestore pannelli comandi:



Una volta terminato nelle maschere troveremo il Pannello comandi principale:

7) Creazione macro Autoexec

Per facilitare l'utente facciamo in modo che quando il programma parte apra automaticamente la maschera Pannello comandi principale, creando una macro che parta automaticamente all'apertura del database, cioè la macro che salveremo con il nome AUTOEXEC.

